CWDM (Coarse Wavelength Division Multiplexing)

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) of laser light. This technique enables bidirectional communications over one strand of fiber, as well as multiplication of capacity.

The term wavelength-division multiplexing is commonly applied to an optical carrier, which is typically described by its wavelength, whereas frequency-division multiplexing typically applies to a radio carrier which is more often described by frequency.

This is purely conventional because wavelength and frequency communicate the same information. Specifically, frequency (in Hertz, which is cycles per second) multiplied by wavelength (the physical length of one cycle) equals the velocity of the carrier wave. In vacuum, this is the velocity of light, usually denoted by the lower case letter, c. In glass fiber, it is substantially slower, usually about 0.7 times c.

The data rate, which ideally might be at the carrier frequency, in practical systems is always a fraction of the carrier frequency.

Related Articles